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“There’s something very interesting about life,” Clark says, “which is that we 
do seem to be built of system upon system upon system. The smallest systems 
are the individual cells, which have an awful lot of their own little 
intelligence, if you like—they take care of themselves, they have their own 
things to do. Maybe there’s a great flexibility in being built out of all these 
little bits of stuff that have their own capacities to protect and organize 
themselves. I’ve become more and more open to the idea that some of the 
fundamental features of life really are important to understanding how our 
mind is possible. I didn’t use to think that. I used to think that you could start 
about halfway up and get everything you needed.” 



Not all neurons are created equal:

Drawing of auditory cortical neurons, Ramón y Cajal (1899)
Fluorescently labeled neurons and glia,  

Livet, Sanes, and Lichtman (2007)

Each neuron has a unique:

1. Location (area, layer)

2. Connections (inputs, outputs)

3. Electrical and chemical responses



Kepecs, A., & Fishell, G. (2014)





How do cells acquire, maintain and 
adjust their diverse characters?



Brain development: 
A tightly orchestrated process

understandably constrain the study of the nascent human
nervous system and the neural circuits it contains (Huisman
et al, 2002; Huttenlocher and Dabholkar, 1997; Levitt, 2003).
Neurodevelopmental data in human beings and nonhuman
primates, consisting mainly of postmortem and neuroima-
ging studies, are both limited and inherently constrained
(Fogliarini et al, 2005; Huttenlocher, 1979, 1990; Huttenlo-
cher and Dabholkar, 1997; Levitt, 2003). The remarkable
evolutionary conservation of neurodevelopmental events
and their timing across species, however, help to validate
the extension of knowledge about prenatal brain develop-
ment from animals to human beings (Bystron et al, 2008;
Finlay and Darlington, 1995; Katz, 2007; Levitt, 2003; Lund
and Lewis, 1993; Marin-Padilla, 1988). In this review, we
integrate established and emerging knowledge of develop-
ment to describe the normal maturation of neural circuits.
We also provide specific examples of neuropsychiatric
disorders that are commonly seen by child psychiatrists and
pediatric neurologists to illustrate how knowledge of
normal circuit development can inform the study and
treatment of developmental psychopathologies.

THE EARLIEST NEURAL CIRCUITS

Early Gestational Events Establish a Framework
for the Genesis of Neural Circuits

The neuro-ontogenic process in humans begins at gesta-
tional age (GA) weeks 2–3 with the folding and fusion of
ectoderm to form the neural tube (Ladher and Schoenwolf,
2005) (Figure 1). At week 4 of gestation, the rostral portion
of the neural tube forms three vesicles that are destined to
give rise to the forebrain, the midbrain, and the hindbrain
(Jessell and Sanes, 2000; Rash and Grove, 2006b; Rhinn et al,
2006; Stern, 2001). The rostral-most prosencephalic (fore-
brain) vesicle then forms two vesicles that are destined to
become the telencephalon (cerebral cortex) and the
diencephalon (thalamus, hypothalamus, and other struc-
tures). This is followed by a complex, dynamic, sequential,
and yet temporally overlapping series of cellular events

that are genetically determined, epigenetically directed,
and environmentally influenced. By GA weeks 5–6, neuro-
blasts, or neuronal precursors, are proliferating rapidly
within the ventricular zone (germinal matrix) that lines the
cerebral ventricles (Bystron et al, 2008; Ghashghaei et al,
2007; Hatten, 1993; Jessell and Sanes, 2000; Kornack and
Rakic, 1995; Levitt, 2003; McManus et al, 2004; Molliver
et al, 1973; Monk et al, 2001; Pencea et al, 2001; Rakic, 1978,
1982, 1988, 1995, 2003; Rash and Grove, 2006a).
The laminar structure of the cerebral cortex is encoded

early in development. By GA week 8, neuroblasts begin to
differentiate into either specific neuronal cell types or
macrogila, depending on their location within a complex
topographic matrix of molecular gradients in the ventricular
zone layer (Figure 2). Postmitotic cells migrate out of this
layer to form cortical laminae in an ‘inside–out’ manner in
which deeper cortical layers are formed before more
superficial ones (Hatten, 1993; Kornack and Rakic, 1995;
Rakic, 1978, 1988, 1995). Most postmitotic neurons travel
along radial glial cells that serve as guides on the path of
neurons to their final destination (Rakic, 1972; Rakic et al,
1994b). Radial glia themselves may also give rise to neurons
in the developing cortex (Liu and Rao, 2004; Malatesta et al,
2000; Miller, 2002; Miyata et al, 2001; Noctor et al, 2001).
Migration depends on a complex set of molecular interac-
tions between neurons and the scaffolding glia (Chao et al,
2009; Gressens, 2000; Hatten, 1999). Another smaller group
of neurons originates from the primordia of the basal
ganglia nuclei (the medial and lateral ganglionic eminences)
and migrates tangentially (ie parallel to the outer cortical
surface) to destinations in the developing cerebral cortex
and thalamus, giving rise to all of the GABAergic neurons in
the mature brain (McManus et al, 2004; Monk et al, 2001;
O’Rourke et al, 1992; Van Eden et al, 1989). Neuronal
migration peaks between GA weeks 12 and 20 and is largely
complete by GA weeks 26–29 (de Graaf-Peters and Hadders-
Algra, 2006; Gupta et al, 2005) (Figure 2).
Errors in neuronal migration can have profound neuro-

developmental consequences. Lissencephaly, or ‘smooth
brain,’ for example, is a disorder of neuronal migration that
disrupts the normal patterning of gyri and sulci. Its
functional consequences range from mental retardation to
death in infancy (Olson and Walsh, 2002). The various
causes of lissencephaly include mutations in genes encoding
cytoskeletal proteins, components of the basal lamina,
glycosyltransferases, and components of the reelin signaling
pathway. Disturbances in neuronal migration can also
produce foci of ectopic cortical tissue in the white matter.
These gray matter foci contain both GABAergic and
glutamatergic cells that can produce seizure disorders
(Gomez et al, 1999; Uhlmann et al, 2002).

Early Synapses in the Developing Brain

As neurons complete their migration, they extend axons
and dendrites to appropriate synaptic partners. Scaffolding
cells and molecular gradients are important in the assembly

Figure 1. Timeline of major events in brain development. This diagram
represents brain development beginning with neurolation, and proceed-
ing with neuronal migration, synaptogenesis, pruning, myelination, and
cortical thinning. Reproduced with permission and modified from Giedd
(1999) (Copyright 1999) American Psychiatric Association.
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expressed or their interaction with other factors, harnessing
these important mediators of brain development may offer a
novel mechanism to alter trajectories following an insult.

Once the initial phase of innervation has occurred,
approximately 50% of all neurons are eliminated during the
period immediately before birth, in a process known as
programmed cell death or apoptosis [102,124]. During this
period, dramatic morphological rearrangements occur with
the hypothesized goal to increase efficiency of synaptic
transmission [40,100,172]. A second wave of overproduc-
tion and elimination occurs later in life during
periadolescence.

2.2. Postnatal brain development

Monoamine neurons are detectable by embryonic ages
13–18 days in the rat [161]. At birth, dopaminergic
markers, including tyrosine hydroxylase activity, dopamine
uptake sites, and dopamine content, are approximately 10%
of levels in the adult rat [34,43]. These markers increase
monotonically and attain adult levels between 28 and 35
days in the rat. Monoamine oxidase (MAO) increases, and
accordingly, turnover ratios (metabolite to transmitter)

decrease with age [110,210]. Firing rates of nigrostriatal
neurons increase gradually [167,212]. Dopamine D1 and D2
receptor density increases in a linear fashion during the first
4 weeks of life and reach their adult-like density at this stage
[159,163,176].

During the periadolescent period, the second wave of
neuronal rearrangements occurs. This wave witnesses a
tremendous overshoot of synapses and receptors during
periadolescence, followed by their pruning or competitive
elimination. (For a comparison of ages and stages of rat
versus human developmental periods, see Fig. 2.) This
fundamental developmental strategy is common to most
regions of the mammalian central nervous system and has
been observed in humans [72,98,190], primates [138,175,
179], and rats [13,71,209]. Between 7 and 15 years of age in
humans, synaptic density in the frontal cortex decreases by
approximately 40% [98,174]. Comparable changes occur in
the human receptors for dopamine [190], glutamate [20],
and neurotensin [147].

Huttenlocher [98] was the first to demonstrate that the
timing of synaptic production and elimination of the
postnatal human brain differed across different regions of
the cortex. The density of synapses in the primary visual

Fig. 1. The stages of brain development (top) and different windows of vulnerability (bottom). Developmental processes occur in phases, setting the stage for

potential periods of vulnerability. Insults early in life (bottom) will be assimilated into innervation patterns, whereas a later pre-pubertal insult will cause

functional changes that are more adaptive.
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Neurodevelopmental data in human beings and nonhuman
primates, consisting mainly of postmortem and neuroima-
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the extension of knowledge about prenatal brain develop-
ment from animals to human beings (Bystron et al, 2008;
Finlay and Darlington, 1995; Katz, 2007; Levitt, 2003; Lund
and Lewis, 1993; Marin-Padilla, 1988). In this review, we
integrate established and emerging knowledge of develop-
ment to describe the normal maturation of neural circuits.
We also provide specific examples of neuropsychiatric
disorders that are commonly seen by child psychiatrists and
pediatric neurologists to illustrate how knowledge of
normal circuit development can inform the study and
treatment of developmental psychopathologies.
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for the Genesis of Neural Circuits

The neuro-ontogenic process in humans begins at gesta-
tional age (GA) weeks 2–3 with the folding and fusion of
ectoderm to form the neural tube (Ladher and Schoenwolf,
2005) (Figure 1). At week 4 of gestation, the rostral portion
of the neural tube forms three vesicles that are destined to
give rise to the forebrain, the midbrain, and the hindbrain
(Jessell and Sanes, 2000; Rash and Grove, 2006b; Rhinn et al,
2006; Stern, 2001). The rostral-most prosencephalic (fore-
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diencephalon (thalamus, hypothalamus, and other struc-
tures). This is followed by a complex, dynamic, sequential,
and yet temporally overlapping series of cellular events
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and environmentally influenced. By GA weeks 5–6, neuro-
blasts, or neuronal precursors, are proliferating rapidly
within the ventricular zone (germinal matrix) that lines the
cerebral ventricles (Bystron et al, 2008; Ghashghaei et al,
2007; Hatten, 1993; Jessell and Sanes, 2000; Kornack and
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The laminar structure of the cerebral cortex is encoded

early in development. By GA week 8, neuroblasts begin to
differentiate into either specific neuronal cell types or
macrogila, depending on their location within a complex
topographic matrix of molecular gradients in the ventricular
zone layer (Figure 2). Postmitotic cells migrate out of this
layer to form cortical laminae in an ‘inside–out’ manner in
which deeper cortical layers are formed before more
superficial ones (Hatten, 1993; Kornack and Rakic, 1995;
Rakic, 1978, 1988, 1995). Most postmitotic neurons travel
along radial glial cells that serve as guides on the path of
neurons to their final destination (Rakic, 1972; Rakic et al,
1994b). Radial glia themselves may also give rise to neurons
in the developing cortex (Liu and Rao, 2004; Malatesta et al,
2000; Miller, 2002; Miyata et al, 2001; Noctor et al, 2001).
Migration depends on a complex set of molecular interac-
tions between neurons and the scaffolding glia (Chao et al,
2009; Gressens, 2000; Hatten, 1999). Another smaller group
of neurons originates from the primordia of the basal
ganglia nuclei (the medial and lateral ganglionic eminences)
and migrates tangentially (ie parallel to the outer cortical
surface) to destinations in the developing cerebral cortex
and thalamus, giving rise to all of the GABAergic neurons in
the mature brain (McManus et al, 2004; Monk et al, 2001;
O’Rourke et al, 1992; Van Eden et al, 1989). Neuronal
migration peaks between GA weeks 12 and 20 and is largely
complete by GA weeks 26–29 (de Graaf-Peters and Hadders-
Algra, 2006; Gupta et al, 2005) (Figure 2).
Errors in neuronal migration can have profound neuro-

developmental consequences. Lissencephaly, or ‘smooth
brain,’ for example, is a disorder of neuronal migration that
disrupts the normal patterning of gyri and sulci. Its
functional consequences range from mental retardation to
death in infancy (Olson and Walsh, 2002). The various
causes of lissencephaly include mutations in genes encoding
cytoskeletal proteins, components of the basal lamina,
glycosyltransferases, and components of the reelin signaling
pathway. Disturbances in neuronal migration can also
produce foci of ectopic cortical tissue in the white matter.
These gray matter foci contain both GABAergic and
glutamatergic cells that can produce seizure disorders
(Gomez et al, 1999; Uhlmann et al, 2002).

Early Synapses in the Developing Brain

As neurons complete their migration, they extend axons
and dendrites to appropriate synaptic partners. Scaffolding
cells and molecular gradients are important in the assembly

Figure 1. Timeline of major events in brain development. This diagram
represents brain development beginning with neurolation, and proceed-
ing with neuronal migration, synaptogenesis, pruning, myelination, and
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Puzzle: 
Different cells, same genome...

Drawing of pigeon cerebellar Purkinje 
and granule cells, Ramon y Cajal (1899)

GABA

Glutamate

ATT GG C......G C C

Same genome

Multiple mature phenotypes



Levels of organization in 
the genome

DNA wrapped around
a histone particle



Levels of organization in 
the genome



Levels of organization in 
the genome



Modifications to DNA are epigenetic 
“punctuation marks”

Encyclopedia of DNA Elements (ENCODE) (2012)



STOP CLUBBING BABY SEALS!!

STOP CLUBBING, BABY SEALS!

Epigenetics:
Punctuation. Is. Key.



The genome as a computational 
network

ENCODE:
Encyclopedia of 
DNA elements



Cytosine DNA Methylation

• Covalent modification of genomic cytosine (mC)

• Key roles in imprinting,  X-inactivation, transcription repression, 
cancer 

• Stable and heritable

• Yet, reversible and potentially activity-dependent

• Rett syndrome: An autism-spectrum disorder caused by Methyl-C 
Binding Protein (MECP2) loss of function

Dnmt1, 
Dnmt3a,b 

non-CG (CH):
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unmethylated
after differentiation

CG:
Highly methylated

in all cell types
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Epigenetic regulation in insects

Queen and female worker 
bees

Royal jelly

Dnmt1, 
Dnmt3a,b 



Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396–398. doi:10.1038/nature05913

Plants

Epimutation:  
Two forms of the toadflax plant with identical genotype but different 
inherited DNA methylation patterns



Mammals: You are what you eat
(so eat your vitamins!) 

Nutrients supporting healthy methylation: 
• Folic acid 
• B-vitamins 
• SAM (S-adenosyl methionine) 
Especially important for pregnant mothers/infants



Maternal care induces life-long changes in  
DNA methylation and stress resilience in offspring

⬆ ⬇Stress behavior of offspring

⬆Glucocorticoid receptor (GR) 
expression in brain⬇

GR promoter is hypermethylated in hippocampus  
in low-quality group [Weaver, …, Szyf, Meaney (2004)]

Maternal Care

Offspring DNA methylation

Offspring GR expression

Offspring stress behavior

⬇

⬇

⬇

Low quality maternal care High quality maternal care



Testing the cognitive role of epigenetic modifications requires  
genome-scale, base-resolution neuronal epigenome profiling

Day, … Sweatt, Nature Neuro. (2013)

Evidence from candidate  
gene approaches: ~106 x



Studying gene networks: 
Shotgun sequencing 



Shotgun bisulfite sequencing measures the 
DNA methylation landscape

R. Lister and J. Ecker, Genome Research (2009)

Genomic DNA

Random fragmentation

Deep sequencing

Computational 
analysis/statistics
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Two DNA sequence  
contexts for methylation
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A surprise: 
Substantial non-CG  

methylation in neurons 

R. Lister*, E.A, Mukamel* et al.. Science (2013)

See also: Xie et al., Cell (2012); Zeng et al., Am. J. Hum. Gen. (2012)
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How does methylation accumulate 
during brain development?

understandably constrain the study of the nascent human
nervous system and the neural circuits it contains (Huisman
et al, 2002; Huttenlocher and Dabholkar, 1997; Levitt, 2003).
Neurodevelopmental data in human beings and nonhuman
primates, consisting mainly of postmortem and neuroima-
ging studies, are both limited and inherently constrained
(Fogliarini et al, 2005; Huttenlocher, 1979, 1990; Huttenlo-
cher and Dabholkar, 1997; Levitt, 2003). The remarkable
evolutionary conservation of neurodevelopmental events
and their timing across species, however, help to validate
the extension of knowledge about prenatal brain develop-
ment from animals to human beings (Bystron et al, 2008;
Finlay and Darlington, 1995; Katz, 2007; Levitt, 2003; Lund
and Lewis, 1993; Marin-Padilla, 1988). In this review, we
integrate established and emerging knowledge of develop-
ment to describe the normal maturation of neural circuits.
We also provide specific examples of neuropsychiatric
disorders that are commonly seen by child psychiatrists and
pediatric neurologists to illustrate how knowledge of
normal circuit development can inform the study and
treatment of developmental psychopathologies.

THE EARLIEST NEURAL CIRCUITS

Early Gestational Events Establish a Framework
for the Genesis of Neural Circuits

The neuro-ontogenic process in humans begins at gesta-
tional age (GA) weeks 2–3 with the folding and fusion of
ectoderm to form the neural tube (Ladher and Schoenwolf,
2005) (Figure 1). At week 4 of gestation, the rostral portion
of the neural tube forms three vesicles that are destined to
give rise to the forebrain, the midbrain, and the hindbrain
(Jessell and Sanes, 2000; Rash and Grove, 2006b; Rhinn et al,
2006; Stern, 2001). The rostral-most prosencephalic (fore-
brain) vesicle then forms two vesicles that are destined to
become the telencephalon (cerebral cortex) and the
diencephalon (thalamus, hypothalamus, and other struc-
tures). This is followed by a complex, dynamic, sequential,
and yet temporally overlapping series of cellular events

that are genetically determined, epigenetically directed,
and environmentally influenced. By GA weeks 5–6, neuro-
blasts, or neuronal precursors, are proliferating rapidly
within the ventricular zone (germinal matrix) that lines the
cerebral ventricles (Bystron et al, 2008; Ghashghaei et al,
2007; Hatten, 1993; Jessell and Sanes, 2000; Kornack and
Rakic, 1995; Levitt, 2003; McManus et al, 2004; Molliver
et al, 1973; Monk et al, 2001; Pencea et al, 2001; Rakic, 1978,
1982, 1988, 1995, 2003; Rash and Grove, 2006a).
The laminar structure of the cerebral cortex is encoded

early in development. By GA week 8, neuroblasts begin to
differentiate into either specific neuronal cell types or
macrogila, depending on their location within a complex
topographic matrix of molecular gradients in the ventricular
zone layer (Figure 2). Postmitotic cells migrate out of this
layer to form cortical laminae in an ‘inside–out’ manner in
which deeper cortical layers are formed before more
superficial ones (Hatten, 1993; Kornack and Rakic, 1995;
Rakic, 1978, 1988, 1995). Most postmitotic neurons travel
along radial glial cells that serve as guides on the path of
neurons to their final destination (Rakic, 1972; Rakic et al,
1994b). Radial glia themselves may also give rise to neurons
in the developing cortex (Liu and Rao, 2004; Malatesta et al,
2000; Miller, 2002; Miyata et al, 2001; Noctor et al, 2001).
Migration depends on a complex set of molecular interac-
tions between neurons and the scaffolding glia (Chao et al,
2009; Gressens, 2000; Hatten, 1999). Another smaller group
of neurons originates from the primordia of the basal
ganglia nuclei (the medial and lateral ganglionic eminences)
and migrates tangentially (ie parallel to the outer cortical
surface) to destinations in the developing cerebral cortex
and thalamus, giving rise to all of the GABAergic neurons in
the mature brain (McManus et al, 2004; Monk et al, 2001;
O’Rourke et al, 1992; Van Eden et al, 1989). Neuronal
migration peaks between GA weeks 12 and 20 and is largely
complete by GA weeks 26–29 (de Graaf-Peters and Hadders-
Algra, 2006; Gupta et al, 2005) (Figure 2).
Errors in neuronal migration can have profound neuro-

developmental consequences. Lissencephaly, or ‘smooth
brain,’ for example, is a disorder of neuronal migration that
disrupts the normal patterning of gyri and sulci. Its
functional consequences range from mental retardation to
death in infancy (Olson and Walsh, 2002). The various
causes of lissencephaly include mutations in genes encoding
cytoskeletal proteins, components of the basal lamina,
glycosyltransferases, and components of the reelin signaling
pathway. Disturbances in neuronal migration can also
produce foci of ectopic cortical tissue in the white matter.
These gray matter foci contain both GABAergic and
glutamatergic cells that can produce seizure disorders
(Gomez et al, 1999; Uhlmann et al, 2002).

Early Synapses in the Developing Brain

As neurons complete their migration, they extend axons
and dendrites to appropriate synaptic partners. Scaffolding
cells and molecular gradients are important in the assembly

Figure 1. Timeline of major events in brain development. This diagram
represents brain development beginning with neurolation, and proceed-
ing with neuronal migration, synaptogenesis, pruning, myelination, and
cortical thinning. Reproduced with permission and modified from Giedd
(1999) (Copyright 1999) American Psychiatric Association.
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expressed or their interaction with other factors, harnessing
these important mediators of brain development may offer a
novel mechanism to alter trajectories following an insult.

Once the initial phase of innervation has occurred,
approximately 50% of all neurons are eliminated during the
period immediately before birth, in a process known as
programmed cell death or apoptosis [102,124]. During this
period, dramatic morphological rearrangements occur with
the hypothesized goal to increase efficiency of synaptic
transmission [40,100,172]. A second wave of overproduc-
tion and elimination occurs later in life during
periadolescence.

2.2. Postnatal brain development

Monoamine neurons are detectable by embryonic ages
13–18 days in the rat [161]. At birth, dopaminergic
markers, including tyrosine hydroxylase activity, dopamine
uptake sites, and dopamine content, are approximately 10%
of levels in the adult rat [34,43]. These markers increase
monotonically and attain adult levels between 28 and 35
days in the rat. Monoamine oxidase (MAO) increases, and
accordingly, turnover ratios (metabolite to transmitter)

decrease with age [110,210]. Firing rates of nigrostriatal
neurons increase gradually [167,212]. Dopamine D1 and D2
receptor density increases in a linear fashion during the first
4 weeks of life and reach their adult-like density at this stage
[159,163,176].

During the periadolescent period, the second wave of
neuronal rearrangements occurs. This wave witnesses a
tremendous overshoot of synapses and receptors during
periadolescence, followed by their pruning or competitive
elimination. (For a comparison of ages and stages of rat
versus human developmental periods, see Fig. 2.) This
fundamental developmental strategy is common to most
regions of the mammalian central nervous system and has
been observed in humans [72,98,190], primates [138,175,
179], and rats [13,71,209]. Between 7 and 15 years of age in
humans, synaptic density in the frontal cortex decreases by
approximately 40% [98,174]. Comparable changes occur in
the human receptors for dopamine [190], glutamate [20],
and neurotensin [147].

Huttenlocher [98] was the first to demonstrate that the
timing of synaptic production and elimination of the
postnatal human brain differed across different regions of
the cortex. The density of synapses in the primary visual

Fig. 1. The stages of brain development (top) and different windows of vulnerability (bottom). Developmental processes occur in phases, setting the stage for

potential periods of vulnerability. Insults early in life (bottom) will be assimilated into innervation patterns, whereas a later pre-pubertal insult will cause

functional changes that are more adaptive.
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understandably constrain the study of the nascent human
nervous system and the neural circuits it contains (Huisman
et al, 2002; Huttenlocher and Dabholkar, 1997; Levitt, 2003).
Neurodevelopmental data in human beings and nonhuman
primates, consisting mainly of postmortem and neuroima-
ging studies, are both limited and inherently constrained
(Fogliarini et al, 2005; Huttenlocher, 1979, 1990; Huttenlo-
cher and Dabholkar, 1997; Levitt, 2003). The remarkable
evolutionary conservation of neurodevelopmental events
and their timing across species, however, help to validate
the extension of knowledge about prenatal brain develop-
ment from animals to human beings (Bystron et al, 2008;
Finlay and Darlington, 1995; Katz, 2007; Levitt, 2003; Lund
and Lewis, 1993; Marin-Padilla, 1988). In this review, we
integrate established and emerging knowledge of develop-
ment to describe the normal maturation of neural circuits.
We also provide specific examples of neuropsychiatric
disorders that are commonly seen by child psychiatrists and
pediatric neurologists to illustrate how knowledge of
normal circuit development can inform the study and
treatment of developmental psychopathologies.

THE EARLIEST NEURAL CIRCUITS

Early Gestational Events Establish a Framework
for the Genesis of Neural Circuits

The neuro-ontogenic process in humans begins at gesta-
tional age (GA) weeks 2–3 with the folding and fusion of
ectoderm to form the neural tube (Ladher and Schoenwolf,
2005) (Figure 1). At week 4 of gestation, the rostral portion
of the neural tube forms three vesicles that are destined to
give rise to the forebrain, the midbrain, and the hindbrain
(Jessell and Sanes, 2000; Rash and Grove, 2006b; Rhinn et al,
2006; Stern, 2001). The rostral-most prosencephalic (fore-
brain) vesicle then forms two vesicles that are destined to
become the telencephalon (cerebral cortex) and the
diencephalon (thalamus, hypothalamus, and other struc-
tures). This is followed by a complex, dynamic, sequential,
and yet temporally overlapping series of cellular events

that are genetically determined, epigenetically directed,
and environmentally influenced. By GA weeks 5–6, neuro-
blasts, or neuronal precursors, are proliferating rapidly
within the ventricular zone (germinal matrix) that lines the
cerebral ventricles (Bystron et al, 2008; Ghashghaei et al,
2007; Hatten, 1993; Jessell and Sanes, 2000; Kornack and
Rakic, 1995; Levitt, 2003; McManus et al, 2004; Molliver
et al, 1973; Monk et al, 2001; Pencea et al, 2001; Rakic, 1978,
1982, 1988, 1995, 2003; Rash and Grove, 2006a).
The laminar structure of the cerebral cortex is encoded

early in development. By GA week 8, neuroblasts begin to
differentiate into either specific neuronal cell types or
macrogila, depending on their location within a complex
topographic matrix of molecular gradients in the ventricular
zone layer (Figure 2). Postmitotic cells migrate out of this
layer to form cortical laminae in an ‘inside–out’ manner in
which deeper cortical layers are formed before more
superficial ones (Hatten, 1993; Kornack and Rakic, 1995;
Rakic, 1978, 1988, 1995). Most postmitotic neurons travel
along radial glial cells that serve as guides on the path of
neurons to their final destination (Rakic, 1972; Rakic et al,
1994b). Radial glia themselves may also give rise to neurons
in the developing cortex (Liu and Rao, 2004; Malatesta et al,
2000; Miller, 2002; Miyata et al, 2001; Noctor et al, 2001).
Migration depends on a complex set of molecular interac-
tions between neurons and the scaffolding glia (Chao et al,
2009; Gressens, 2000; Hatten, 1999). Another smaller group
of neurons originates from the primordia of the basal
ganglia nuclei (the medial and lateral ganglionic eminences)
and migrates tangentially (ie parallel to the outer cortical
surface) to destinations in the developing cerebral cortex
and thalamus, giving rise to all of the GABAergic neurons in
the mature brain (McManus et al, 2004; Monk et al, 2001;
O’Rourke et al, 1992; Van Eden et al, 1989). Neuronal
migration peaks between GA weeks 12 and 20 and is largely
complete by GA weeks 26–29 (de Graaf-Peters and Hadders-
Algra, 2006; Gupta et al, 2005) (Figure 2).
Errors in neuronal migration can have profound neuro-

developmental consequences. Lissencephaly, or ‘smooth
brain,’ for example, is a disorder of neuronal migration that
disrupts the normal patterning of gyri and sulci. Its
functional consequences range from mental retardation to
death in infancy (Olson and Walsh, 2002). The various
causes of lissencephaly include mutations in genes encoding
cytoskeletal proteins, components of the basal lamina,
glycosyltransferases, and components of the reelin signaling
pathway. Disturbances in neuronal migration can also
produce foci of ectopic cortical tissue in the white matter.
These gray matter foci contain both GABAergic and
glutamatergic cells that can produce seizure disorders
(Gomez et al, 1999; Uhlmann et al, 2002).

Early Synapses in the Developing Brain

As neurons complete their migration, they extend axons
and dendrites to appropriate synaptic partners. Scaffolding
cells and molecular gradients are important in the assembly

Figure 1. Timeline of major events in brain development. This diagram
represents brain development beginning with neurolation, and proceed-
ing with neuronal migration, synaptogenesis, pruning, myelination, and
cortical thinning. Reproduced with permission and modified from Giedd
(1999) (Copyright 1999) American Psychiatric Association.

Normal development of brain circuits
GZ Tau and BS Peterson
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R. Lister*, E.A, Mukamel* et al.. Science (2013)

Human Mouse
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Non-CG methylation accumulates
throughout childhood and adolescence  



Non-CG methylation increases during years 0-16, 
coinciding with synaptogenesis and pruning

R. Lister*, E.A, Mukamel* et al.. Science (2013)

*DeFelipe et al. (1997); 
Huttenlocher et al., (1997)
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Methylation patterns are strongly conserved 
between individuals

Human
NeuN+

50 bp

CH sites

53yo female

57yo male 

W
C

Conservation suggests there could be a biological function 

However, there is no causal evidence yet (stay tuned)



Does DNA methylation  
contribute to brain cell diversity?

Drawing of auditory cortical neurons, Ramón y Cajal (1899)
Fluorescently labeled neurons and glia,  

Livet, Sanes, and Lichtman (2007)



Cell types have unique  
DNA methylation fingerprints
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Transcription factor MEF2C: 

• Implicated in neurogenesis and cortical development 

• Hypermethylated (i.e., repressed) in glia



mCH is a characteristic feature of 
neurons, not astrocytes
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Non-CG DNA methylation is a 
specific feature of mature neurons



Identifying gene methylation patterns 
is a “Big Data” challenge
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Unbiased clustering of methylation 
profiles identifies distinct gene sets 
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Principal component (PC) analysis of genome-wide methylation 
patterns



Unbiased clustering of methylation 
profiles identifies distinct gene sets 
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Sub-types of neurons: 
Excitatory and inhibitory cells create balance



Excitatory and inhibitory neurons: 
Natives and immigrants

Inhibitory 
cells migrate 
to the cortex

Excitatory cells 
radiate upward 
within cortex



What is the DNA methylation landscape 
in major neuron cell types?

Classification of inhibitory interneuron cell types
Kepecs, A., & Fishell, G. (2014). Nature, 505(7483), 318–326
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Data dimensionality
• A dataset with p “features” (e.g. genes) and n “observations 

(e.g. cells)


• If both p and n are large (>1,000), it becomes difficult to 
visualize, analyze and interpret the data
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Dimensionality reduction by  
Principal Components Analysis (PCA)

• Principal components analysis (PCA) projects high-
dimensional data onto a smaller number of “most 
interesting” dimensions



Example: Projection of 3D global 
geography onto 2D maps



tSNE (t-Stochastic Neighbor Embedding) 
Visualizing cells in a high-dimensional space



Principal components analysis

Linear and non-linear  
dimensional reduction
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Example: Adgra3 is a novel marker of PV+ interneurons

Fig. S11
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Fig. S11. Double ISH experiments validate novel markers predicted by mCH. (A-B) Relative mCH level 
(mCH Z-score) of Sulf1 and Tle4. The z-score is defined as the mCH value minus its mean over all cells, 
divided by the standard deviation across cells. (C-D) Double in situ RNA hybridization results using probes for 
Sulf1 and Tle4 in mouse FC. (C) and (D) show two coronal sections both in mouse FC with (C) located more 
rostral than (D). (E-F) Relative mCH level (mCH Z-score) of Adgra3 and Pvalb. (G) Double in situ RNA hybrid-
ization results using probes for Adgra3 and Pvalb. 



It is good to have hair-splitters & 
lumpers  

(Darwin, 1857)
Splitters make very small units – 

their critics say that if they can tell 
two animals apart, they place them 

in different genera ... and if they 
cannot tell them apart, they place 

them in different species. ...  

Lumpers make large units – their 
critics say that if a carnivore is 

neither a dog nor a bear, they call it 
a cat 

(George Simpson, 1945)

How many cell types are there?
Lumpers vs. Splitters

https://en.wikipedia.org/wiki/Carnivora


Determining cell types through the 
integration of multi-modal datasets

Yamawaki (2014) eLIFE 
Brain adapted from Allen Brain Atlas

Chromatin accessibility 
snATAC-Seq

Transcriptome 
snRNA/scRNA-Seq

DNA methylation 
snmC-Seq



Determining cell types through the 
integration of multi-modal datasets

Yamawaki (2014) eLIFE 
Brain adapted from Allen Brain Atlas

Cell type defined by 
multiple modalities

• Directly link transcription and epigenetic regulation in the same 
cell type 

• Provide cross-modal validation of cell types predicted from one 
data modality 

• Provides foundation for functional cell types



Multi-omics data integration 
requires imputation
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• For each cell in modality A, find K neighbors in modality B 

• This requires a linking assumption, e.g. low gene body mCH corresponds with high mRNA 
expression 

• Use neighbors to impute missing information for A

10X scRNA-Seq

snmC-Seq

Observed data
snmC-Seq + imputed RNA

10X scRNA-Seq 
+ imputed mC

Observed+Imputed data Joint clustering,  
analysis

Cross-modality data fusion by Bigraph Imputation



Integrated cluster 
analysis 
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Exploring cell type specific  
DNA methylation patterns with  
interactive data visualizations 
(http://brainome.org)

http://brainome.org


FOXP2:  
A “language gene”?

• Mutations in FOXP2 linked to language 
disorders (verbal dyspraxia)

• Also linked with vocalization in songbirds



FOXP2 (associated with language) is expressed in different 
cortical layers in mouse and human frontal cortex



~60M years of evolution 
led to greater divergence 
in excitatory compared 
with inhibitory neuron 
epigenomes
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Complex biological networks: 
Genes and Brains

C. Elegans connectome (1986)

Brains (neural networks)

?

Genomes (gene networks)

Encyclopedia of DNA Elements 
(ENCODE) (2012)

Encode and store innate information 

Encode and store learned information 

Transmit information 

Enable complex, recurrent interactions



Take-home message

The methylation status at ~1 billion cytosines 
in the genome is potentially an information-
rich, stable yet flexible substrate for 
information storage/processing



Open questions: 
• Functional role of mCH? 

• Differences between 100s of neuronal subtypes? 

• Impact of experience/learning? 

• Disruption in neuropsychiatric disorders?
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