(Parts 1 & 2) For Dummies—
The Introduction to Neural Networks we all need!

Harsh PokharnaFollow

Jul 26, 2016

Blockchains | Mobile Application Development | IIT Kanpur Alum | Ex-Flipkart | Ex-JioMoney |
Classic Rock | Guitar | Fitness | Long Drives

This is going to be a 2 article series. This article gives an
introduction to perceptrons (single layered neural
networks)

Update: Part2 of the series is now available for reading
here!

Boutons

Dendrites

q

A neuron in our brain

Our brain uses the extremely large interconnected
network of neurons for information processing and to
model the world around us. Simply put, a neuron
collects inputs from other neurons using dendrites. The
neuron sums all the inputs and if the resulting value is
greater than a threshold, it fires. The fired signal is then
sent to other connected neurons through the axon.

Now, how do we model artificial neurons?

| f
Output

Inputs

Sum Activation
Function

Model of an artificial neuron

The figure depicts a neuron connected with n other
neurons and thus receives n inputs (x1, X2, ..... xn). This
configuration is called a Perceptron.

The inputs (x1, X2, .... xn) and weights (w1, w2, .... wn)
are real numbers and can be positive or negative.

The perceptron consists of weights, summation
processor and an activation function.

Note: It also contains a threshold processor (known as
bias) but we will talk about that later!

All the inputs are individually weighted, added together
and passed into the activation function. There are many
different types of activation function but one of the
simplest would be step function. A step function will
typically output a 1 if the input is higher than a certain
threshold, otherwise it’s output will be 0.

Note: There are other activation functions too such as
sigmoid, etc which are used in practice.

An example would be,

Input 1 (x1) = 0.6
Input 2 (x2) = 1.0

Weight 1 (wl) =0.5
Weight 2 (w2) = 0.8

Threshold = 1.0
Weighing the inputs and adding them together gives,
x1wl +x2w2 = (0.6 x0.5) + (1x0.8) = 1.1

Here, the total input is higher than the threshold and
thus the neuron fires.




Training in perceptrons!

Try teaching a child to recognize a bus? You show her
examples, telling her, “This is a bus. That is not a bus,”
until the child learns the concept of what a bus is.
Furthermore, if the child sees new objects that she
hasn’t seen before, we could expect her to recognize
correctly whether the new object is a bus or not.

This is exactly the idea behind the perceptron.

Similarly, input vectors from a training set are
presented to the perceptron one after the other and
weights are modified according to the following
equation,

For all inputs i,
W(i) = W(i) + a*(T-A)*P(i), where a is the learning rate

Note: Actually the equation is

W(i) = W(i) + a*g’(sum of all inputs)*(T-A)*P(i),

where g’ is the derivative of the activation function.
Since it is problematic to deal with the derivative of step
function, we drop that out of the equation here.

Here, W is the weight vector. P is the input vector. T is
the correct output that the perceptron should have
known and A is the output given by the perceptron.

When an entire pass through all of the input training
vectors is completed without an error, the perceptron
has learnt!

At this time, is an input vector P (already in the training
set) is given to the perceptron, it will output the correct
value. If P is not in the training set, the network will
respond with an output similar to other training vectors
close to P.

What is the perceptron actually doing?
The perceptron is adding all the inputs and separating
them into 2 categories, those that cause it to fire and
those that don’t. That is, it is drawing the line:

wilxl + w2x2 = t, where t is the threshold

and looking at where the input point lies. Points on one
side of the line fall into 1 category, points on the other
side fall into the other category. And because the
weights and thresholds can be anything, this is just any
line across the 2 dimensional input space.

Limitation of Perceptrons

Not every set of inputs can be divided by a line like this.
Those that can be are called linearly separable. If the
vectors are not linearly separable, learning will never
reach a point where all vectors are classified properly.
The most famous example of the perceptron’s inability
to solve problems with linearly non-separable vectors is
the boolean XOR problem.

The next part of this article series will show how to do
this using muti-layer neural networks, using the back
propagation training method.

If you enjoyed reading this article, hit the little green
heart button to show your love!

To stay updated for the next article in the series, please
follow :)

And if you want your friends to read this too, click share!

References: http://www.codeproject.com/Articles/16508/Al-Neural-Network-for-beginners-Part-of

http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7

https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-networks-we-all-need-

c50f6012d5eb

https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-networks-we-all-need-part-2-

1218d5dc043



This article is in continuation to the Part1 of this series.
If you have not yet read it, | highly recommend you to do
that before we dive into multi layered neural networks
here!

Just as a recap, | will quickly go through what a single
layered neural network basically does. Once a training
sample is feeded to the network, each output node of
the single layered neural network (also called
Perceptron) takes a weighted sum of all the inputs and
pass them through an activation function (probably
sigmoid or step) and comes up with an output. The
weights are then corrected using the following
equation,

For all inputs i,

W(i) = W(i) + a*g’(sum of all inputs)*(T-A)*P(i),
where a is the learning rate and g’ is the derivative of
the activation function.

Note: We drop the derivative function in case the
activation function is a step function.

This process is repeated by feeding the whole training
set several times until the network responds with a
correct output for all the samples. The training is
possible only for inputs that are linearly separable. This
is where multi-layered neural networks come into
picture.

What are multi-layered neural networks?

Cutput Layer

t

Hidden Layer

t

Input Layer

A multi-layered neural network

Each input from the input layer is fed up to each node in
the hidden layer, and from there to each node on the
output layer. We should note that there can be any
number of nodes per layer and there are usually
multiple hidden layers to pass through before ultimately
reaching the output layer.

But to train this network we need a learning algorithm
which should be able to tune not only the weights
between the output layer and the hidden layer but also
the weights between the hidden layer and the input
layer.

Enters Back Propagation!

First of all, we need to understand what do we lack. To
tune the weights between the hidden layer and the
input layer, we need to know the error at the hidden
layer, but we know the error only at the output layer
(We know the correct output from the training sample
and we also know the output predicted by the network.)

So, the method that was suggested was to take the
errors at the output layer and proportionally propagate
them backwards to the hidden layer.

Below we will write equation for a 2 layered network
but the same concept applies to a network with any
number of layers.

One segment of a 2 layered network

We will follow the nomenclature as shown in the above
figure.

https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-networks-we-all-need-

c50f6012d5eb

https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-networks-we-all-need-part-2-

1218d5dc043



For a particular neuron in output layer

for all j{

Wij,i = Wij,i + a*g’(sum of all inputs)*(T-A)*P(j)
}

This equation tunes the weights between the output
layer and the hidden layer.

For a particular neuron j in hidden layer, we propogate
the error backwards from the output layer, thus

Error = Wj,1 * E1 + Wj,2 * E2 + ..... for all the neurons in
output layer

Thus,

For a particular neuron in hidden layer

for all k{

Wk,j = Wk,j + a*g’(sum of all inputs)*(T-A)*P(k)
}

This equation tunes the weights between the hidden
layer and the input layer.

So, in a nutshell what we are doing is

e We present a training sample to the neural
network (initialised with random weights)

e Compute the output received by calculating
activations of each layer and thus calculate the
error

e Having calculated the error, we readjust the
weights (according to the above mentioned
equations) such that the error decreases

e We continue the process for all training samples
several times until the weights are not changing
too much

If you enjoyed reading this article, hit the little green
heart button to show your love!

To stay updated with new technologies, please follow :)

And if you want your friends to read this too, click share!

References: http://www.codeproject.com/Articles/16508/Al-Neural-Network-for-beginners-Part-of

http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7

https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-networks-we-all-need-

c50f6012d5eb

https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-networks-we-all-need-part-2-

1218d5dc043



